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Abstract

This paper establishes the reliability and efficiency of equilibrated a posteriori estimates for L2 stress error control of
conforming displacement finite element approximations of incremental plasticity and viscoplasticity with hardening.
Explicit expressions for upper bounds of the reliability constant that enters the guaranteed upper error bound illustrate
its crucial dependence on the hardening material constants. Numerical experiments show that adaptive finite element
solutions with marking strategy based on the max-refinement rule and local equilibrated error estimators lead to opti-
mal empirical convergence rates.
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1. Introduction

Within each time step in a finite element analysis of elastoplastic and elastoviscoplastic evolution prob-
lems, one must solve a variational inequality with a complicated material law determined by admissible
(generalised) stresses on top of the problem of linear elasticity. In the development of a posteriori error esti-
mates for this class of problems one would expect that the estimates should involve also a measure of the
residual in the material law, e.g., in some Kuhn–Tucker conditions on the plastic multiplier. However, as
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reported in [25], estimates of the norm of the residual in the equilibrium conditions might serve as an error
estimator for reliable error control of finite element approximations of incremental plasticity and viscoplas-
ticity. Corresponding residual-based estimates contain the term
gT ;R ¼ h2T

Z
T
jf þ divT rhj2dxþ

Z
oT
hEj½rhmE�j2 ds; ð1:1Þ
for one element T (of diameter hT) with edges E (of length hE) on its boundary oT ; f is a given volume force
and divTrh is the piecewise divergence while [rhmE] denotes the jump of the normal tractions rhmE across the
element edge E in the direction mE (and standard modification on parts of the boundary of X with applied
surface loads). The estimator of [25] presents, however, also other terms related to the plastic region where
the functional analytical setting required for perfect plasticity provides only very weak approximation
properties of the displacement field in BD(X) [40,20]. It is shown in [4,11] that (1.1) yields a reliable and
efficient error estimator
gR ¼
X
T2T

g2T

 !1=2

; ð1:2Þ
that is, there exist constants CR,eff and CR,rel and higher order terms (hot) such that the following bounds
hold:
CR;effgR 6 kr� rhkL2ðX;Rd�d Þ þ hot; kr� rhkL2ðX;Rd�d Þ 6 CR;relgR þ hot. ð1:3Þ
The estimates (1.3)1 and (1.3)2 are next referred to as efficiency and reliability estimate, respectively. The
constants CR,eff and CR,rel depend neither on the mesh-sizes hT, hE nor on the unknown exact solution
[14]; they depend on the domain, the material law and material (hardening and viscosity) parameters.
For more general error norms (or error functionals) the duality approach of [37,38,33,17] could be em-
ployed. The residuals of the computed solution are multiplied by local weights obtained numerically from
the solution of linearized dual problems. Although the theoretical justification of these estimates is disput-
able, this approach leads to very accurate error guesses and is very valuable for particular error functionals.

In this paper, we consider L2 stress error control in elastoplasticity and viscoplasticity with hardening
[11,4,12,15]. Therein, in each time step, the functional analytical context of linear elasticity is applicable
on the price of that some constants crucially depend on the hardening moduli. Averaging [12], explicit resid-
ual type [25,11,4], and heuristic estimates [8,36] of the error have been considered and analysed for the finite
element error control of incremental plasticity. In these contributions, the above dependence has been al-
ways mentioned but never investigated. For explicit residual-based a posteriori error estimators it is more-
over known for elliptic problems [13] that the strict estimation of CR,rel often leads to a huge overestimation
and hence appears almost useless as stopping criterion. For sharp error control, on contrary, the implicit
error estimators such as the equilibration error estimator [28,2] have proved to give a better performance
[13]. This is also confirmed by several applications of the equilibration techniques for the construction of
admissible solutions used in the family of error measures based on the error in the constitutive equations for
associative material models [21,30].

The main goals of this work are therefore the following. First, we want to explore in an explicit way the
type of dependence of the reliability constants on the material properties, in particular on the hardening
modulus and the viscosity coefficient for a quite general class of inelastic material models. Instrumental
are the establishment of some bounds on the plastic strain error in terms of the stress error, useful also
in a broader context than error control of finite element approximations. Second, we want to analyse
the feasibility of equilibration technique for efficient and reliable error control of the space discretization
error. Finally, we want to investigate the numerical performance of adaptive finite element schemes with
marking strategy based on the max-refinement rule and on the local equilibrated error estimators gEQ,T.
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Likewise in linear elasticity, the local error indicators gEQ,T are related to the Riesz representation in a
suitable Hilbert space WT to be made precise later of the local residual ‘EQT ,
‘EQT :¼
Z
T
rh;T � vdxþ

X
E�oT

Z
E
JT
h;E � vds; ð1:4Þ
where JT
h;E with E � oT arises from the equilibration splitting of the residual jump Jh,E resulting by the lack

of equilibrium of the normal tractions rhmE across E and rh,T is associated with the lack of equilibrium at the
interior of each element T 2 T. The incremental form of the evolution equations describing the plastic
material law are satisfied exactly at the Gauss points of each element, hence the material law has therein
a vanishing residual. Excluding the error accumulation for progressing time steps, the only remaining resid-
uals are, therefore, the discrete equilibrium conditions of (1.1). A posteriori error analysis of the time dis-
cretization error is, however, not straightforward to involve, hence in this paper we focus only on one time
increment. For an analysis based on first principles of the all important effects of time discretization one
can, however, refer to [5,21,31,32,35].

The remaining part of the paper is organized as follows. Section 2 introduces notation and setting of the
problem under consideration, Section 3 presents a general class of constitutive models in elastoplasticity
and elastoviscoplasticity. This prepares the ground for the main results of the paper in Section 4. Here,
the reliability and efficiency of equilibrated residual type error estimates for the L2 norm of the error on
the stress of conforming displacement finite element approximation of the incremental elastoplastic and
elastoviscoplastic problem are stated and proved. It turns out that the reliability constant CR,rel depends
crucially on the hardening material constants whereas the efficiency constant CR,eff depends only on the reg-
ularity of the triangulation. The type of dependence of CR,rel is established for the class of inelastic material
models introduced in Section 3 and it is shown that also in presence of viscosity the estimate degenerates for
values of the hardening moduli small compared to the elastic modulus. Section 5 finally reports on the
behaviour of the estimates in terms of the hardening parameter and on adaptive strategies based on the
local error estimators gEQ,T and (1.1). Numerical experiments on model problems show that if we rely
on the efficiency estimate, the adaptive refinement process performs improved convergence rates.
2. Setting of the problem

This section introduces the displacement formulation for stress-based elastoplastic and viscoplastic con-
stitutive models with internal variables, more frequently found in the engineering literature.

2.1. Constitutive model and continuous formulation

Let (0,T) denote the time interval of interest, X a bounded Lipschitz domain in Rd for d = 2,3, . . . with
boundary oX = CD [ CN, and m the outer unit normal. The boundary oX is split into a closed Dirichlet part
CD with positive surface measure and into a Neumann part CN :¼ oXnCD (possibly empty) where traction
forces are prescribed by g 2 L2ðCN; R

dÞ. The strong form of equilibrium conditions states that the stress
field r 2 S :¼ L2ðX; Rd�d

sym Þ;Rd�d
sym being the set of all real symmetric d · d matrices, satisfies
divrþ f ¼ 0 in X� ð0; T Þ; ð2:1Þ
rm ¼ g on CN � ð0; T Þ; ð2:2Þ
where f 2 L2ðX;RdÞ are applied volume force. We suppose, for sake of simplicity, homogeneous geometric
boundary conditions for the displacement field u and introduce the following space of admissible
displacements:
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V :¼ fv 2 H 1ðX;RdÞ : v ¼ 0 on CDg;
equipped with the H 1ðX;RdÞ-norm and boundary values to be interpreted in the sense of the trace theorem;
V is a closed subspace of H 1ðX;RdÞ.

The data f and g are used to define, thanks to the trace theorem, the bounded functional
‘ :¼ hf ; vi þ hg; viCN

2 V �, V� being the topological dual of V, and hÆ, Æi the duality pairing V and V�.
Given the fourth-order isotropic elasticity tensor C, such that Cd ¼ 2ldþ k trdI for d 2 Rd�d

sym , we sup-
pose an additive split eðuÞ ¼ C�1rþ p of the (linear) Green strain
eðuÞ ¼ symðDuÞ ¼ ððuj;k þ uk;jÞ=2 : j; k ¼ 1; . . . ; dÞ;
into an elastic e ¼ C�1r and plastic part p. After introducing further internal (hardening) vari-
ables a 2 M :¼ L2ðX;RmÞ and the hardening material tensor H 2 Rm�m

sym we consider an associative material
law
ðeð _uÞ � C�1 _rÞ : ðs� rÞ �H�1 _a � ðb� aÞ 6 jðs; bÞ � jðr; aÞ; ð2:3Þ
for all ðs; bÞ 2 Rd�d
sym � Rm. We assume the plastic potential j : Rd�d

sym � Rm ! ½0;1� be convex, lower semi-
continuous, proper (i.e., j 6� +1), and that hardening parameters guarantee positive definiteness of the
bilinear form.

Here, in (2.3), and below, the symbol �:� denotes the scalar product of two second order tensors, i.e.
r : e ¼

Pd
i;j¼1rijeij, the symbol �Æ� is the scalar product in the Euclidean space Rm, and �j Æ j� is the associated

norm. The Lebesgue and Sobolev vector spaces are defined in the usual way.

2.2. Time discretization

A generalised midpoint rule serves as a time discretization. Each time step results in a spatial problem
with given variables (u(t),r(t),a(t)) at time t0 denoted as (u0,r0,a0) and unknowns at the time t1 = t0 + Dt
denoted as (u1,r1,a1). Time derivatives are replaced by backward differences quotients. Let
(Æ)h = h(Æ)1 + (1 � h)(Æ)0, with 1/2 6 h 6 1 for the stability of the numerical scheme [23].

Problem 2.1 (The time discrete problem). Given ‘h 2 V� and ðu0; r0; a0Þ 2 V �S�M, seek uh 2 V such
that
 Z

X
rh : eðvÞdx ¼ ‘hðvÞ for all v 2 V andZ

X
ððeðuh � u0Þ � C�1ðrh � r0ÞÞ : ðs� rhÞ �H�1ðah � a0Þ � ðb� ahÞÞdx

6 hDt
Z
X
jðs; bÞdx� hDt

Z
X
jðrh; ahÞdx for all ðs; bÞ 2 S�M.

ð2:4Þ
The displacement formulation of the stress formulation requires to solve pointwise the following incre-
mental constitutive law.

Problem 2.2 (The incremental constitutive law). Given the initial data ðe0; r0; a0Þ 2 Rd�d
sym � Rd�d

sym � Rm and
the total strain eh 2 Rd�d

sym , seek ðrh; ahÞ 2 Rd�d
sym � Rm such that
ððeh � e0Þ � C�1ðrh � r0ÞÞ : ðs� rhÞ �H�1ðah � a0Þ � ðb� ahÞ
6 hDtjðs;bÞ � hDtjðrh; ahÞ for all ðs; bÞ 2 Rd�d

sym � Rm. ð2:5Þ
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By rearranging the terms in (2.5) as follows:
ðeh � ðe0 � C�1r0ÞÞ : ðs� rhÞ þH�1a0 � ðb� ahÞ
6 hDtjðs; bÞ � hDtjðrh; ahÞ þ C�1rh : ðs� rhÞ þH�1ah � ðb� ahÞ; ð2:6Þ
Problem 2.2 defines an elliptic variational inequality, usually referred to as of second kind, which has solu-
tion and is unique [22].

Remark 2.1. Inequality (2.5) shows that for given e0, r0, a0, the operator eh # rh is monotone and
Lipschitz continuous, that is, there exists a positive constant dependent on the elasticity tensor such that the
following inequalities hold
cjr1 � r2j2 6 ðr1 � r2Þ : ðe1 � e2Þ and jr1 � r2j 6 cje1 � e2j; ð2:7Þ

for solutions (r1,a1) and (r2,a2) of (2.5) and eh = e1 and eh = e2, respectively.

Proof. Since (rj,aj) for j = 1, 2 are solutions of (2.5) one obtains
ððe1 � e0Þ � C�1ðr1 � r0ÞÞ : ðr2 � r1Þ �H�1ða1 � a0Þ � ða2 � a1Þ 6 hDtjðr2; a2Þ � hDtjðr1; a1Þ; ð2:8Þ
ððe2 � e0Þ � C�1ðr2 � r0ÞÞ : ðr1 � r2Þ �H�1ða2 � a0Þ � ða1 � a2Þ 6 hDtjðr1; a1Þ � hDtjðr2; a2Þ. ð2:9Þ
The sum of Eqs. (2.8) and (2.9) yields
C�1ðr1 � r2Þ : ðr1 � r2Þ þH�1ða1 � a2Þ � ða1 � a2Þ 6 ðr1 � r2Þ : ðe1 � e2Þ. ð2:10Þ

The positive definiteness of C leads to
1

dkþ l
jr1 � r2j2 6 C�1ðr1 � r2Þ : ðr1 � r2Þ. ð2:11Þ
The combination of Eqs. (2.10) and (2.11) with the positive definiteness of H proves the first inequality in
(2.7); the second follows from the first and a Cauchy inequality. h
2.3. Space discretization

The spatial discrete problem involves a shape-regular triangulation T (in triangles if d = 2 or tetra-
hedrons if d = 3 etc.) of the domain X in the sense of Ciarlet [16,10]. Hanging nodes are excluded and
[T matches exactly the domain and its boundary,
[T ¼ X ¼ X [ oX.
Here and in the sequel, E is the set of all edges in T. For each element domain T 2 T of diameter
hT :¼ diam(T) and area jTj > 0, EðT Þ � E denotes the set of the edges of T. Furthermore, x(T) denotes
the patch of elements T 0 sharing a common edge with T, x(E) the patch of elements having edge E, whereas
E
	
ðxðT ÞÞ denotes the interior edges of the patch x(T). Each edge E with E � oX satisfies either E � CD or

E � CN and this is written as E 2 ED and E 2 EN, respectively. All the remaining edges satisfy E 6� oX and
are written as E 2 EX. This defines a partition
E ¼ EX [ ED [ EN.
Given any edge E 2 E of length hE :¼ diam(E) there is one fixed unit normal mE; for E 2 ED [ EN on the
boundary we choose mE = m. Once mE has been fixed on E, in relation to mE one defines the elements
Tþ 2 T and T� 2 T, with E � oT� \ oT+, as depicted in Fig. 1.



Fig. 1. Definition of the elements T+ and T� in relation to mE.

C. Carstensen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2574–2598 2579
Furthermore, given E 2 EX with unit normal mE and v a vector field defined in X, we denote by [v]E the
jump of v across E in the direction mE, i.e.
½v�EðxÞ ¼ vjTþ
ðxÞ � vjT�

ðxÞ for x 2 E and E � oT� \ oTþ.
The finite element method is defined by the finite element space Vh of the trial and test function space, here
coincident. For any subset x (patch, triangle, or edge), let Pkðx;RdÞ denote the vector space of all algebraic
polynomials in d variables on x of total degree at most k 2 N. Then,
PkðT;RdÞ :¼ fvh 2 L1ðX;RdÞ : 8T 2 T; vhjT 2 PkðT ;RdÞg
denotes the piecewise polynomials of degree at most k where piecewise is with respect to the shape-regular
triangulation T; in general, the functions in PkðT;RdÞ are discontinuous. The globally continuous func-
tions in PkðT;RdÞ form the Pk finite element spaces,
Pk ¼ PkðT;RdÞ \ CðX;RdÞ and V h :¼ PkðT;RdÞ \ V .
The conforming finite element approximation of Problem 2.1 reads as follows.

Problem 2.3 (Fully discrete problem). Given ‘h 2 V* and ðu0;h; r0;h; a0;hÞ 2 V h �S�M, seek uh,h 2 Vh such
that
 Z

X
rh;h : eðvÞdx ¼ ‘hðvÞ for all v 2 V h and ð2:12ÞZ

X
ððeðuh;h � u0;hÞ � C�1ðrh;h � r0;hÞÞ : ðs� rh;hÞ �H�1ðah;h � a0;hÞ � ðb� ah;hÞÞdx

6 hDt
Z
X
jðs; bÞdx� hDt

Z
X
jðrh;h; ah;hÞdx for all ðs; bÞ 2 S�M. ð2:13Þ
Remark 2.2. Problem 2.3 involves a finite element approximation exclusively for the displacement. The
variables (rh,ah) are obtained by the pointwise solution of the incremental constitutive Problem 2.2.

We refer to [24] for details on existence and uniqueness of discrete solutions established for P1 triangular
finite elements, and mention only that (2.12) is the discrete weak form of Eqs. (2.1) and (2.2) whereas (2.13)
is the equivalent integral form of (2.5).
3. Examples in elastoplasticity with hardening and viscoplastic regularization

This section introduces a general class of inelastic material models that will be analysed in this paper.
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3.1. Plasticity with combined isotropic/kinematic hardening

Let m = 1 + d(d + 1)/2, identify Rm � Rd�d
sym � R, and write a = (v,a) where v is the back stress tensor and

a is the accumulated plastic strain which is a nondecreasing and nonnegative function of the time. Introduce
the elastic domain
E :¼ fðr; v; aÞ 2 Rd�d
sym � Rd�d

sym � Rj/ðr; v; aÞ 6 0g; ð3:1Þ
where /(r,v,a) is the continuous and convex von-Mises yield function
Uðr; v; aÞ :¼ jdevr� devvj � ðry þ HaÞ; ð3:2Þ

in case a P 0 (and U(r,a) =1 if a < 0 which, thereby, is not allowed). In (3.2) the material constant ry > 0
is the yield stress and the constant H > 0 is the hardening modulus. If n is the kinematic-type internal var-
iable conjugate of v, we assume v = kn which is the Melan–Prager law and k > 0 a material constant.

The evolution law of the kinematic-type internal variables (p,n,a) are obtained by choosing j ¼ IE in
(2.3), with IE indicator function of E ([19]). As a result, (2.3) is recast as
ð _p;� _n;� _aÞ 2 oIE. ð3:3Þ
3.2. Viscoplastic regularization

Following [18] the viscoplastic material model is defined as a Yosida regularization of the plasticity
material model. If PE denotes the L2-projection of the generalised stress R ¼ ðr; v;HaÞ 2 Rd�d

sym�
Rd�d

sym � R onto the elastic domain E and . is the regularization parameter, which can be considered as a vis-
cosity coefficient, the evolution of the internal variables are defined as follows.

Let
jðRÞ :¼ 1

.
jR�PERj2 ð3:4Þ
from (2.3) one obtains [23]
ð _p;� _n;� _aÞ ¼ ojðRÞ
oR

¼ 1

.
ðR�PERÞ. ð3:5Þ
By letting . ! 0, the model (3.3) of rate-independent plasticity is retrieved [18]. For elastoviscoplasticity
with linear kinematic/isotropic hardening and von Mises yield function, once PE is evaluated, from (3.5)
it follows:
_p ¼ 1

3.
ðjdevðr� knÞj � ðry þ aHÞÞþ

devðr� knÞ
jdevðr� knÞj ;

_n ¼ 1

3.
ðjdevðr� knÞj � ðry þ aHÞÞþ

devðr� knÞ
jdevðr� knÞj ;

_a ¼ 1

3.
ðjdevðr� knÞj � ðry þ aHÞÞþ;

ð3:6Þ
where for a 2 R; ðaÞþ ¼ maxf0; ag. Hence, the incremental evolution law (2.5) reads
ph � p0 ¼
hDt
3.

ðjdevðrh � knhÞj � ðry þ ahHÞÞþ
devðrh � knhÞ
jdevðrh � knhÞj

;

nh � n0 ¼
hDt
3.

ðjdevðrh � knhÞj � ðry þ ahHÞÞþ
devðrh � knhÞ
jdevðrh � knhÞj

;

ah � a0 ¼
hDt
3.

ðjdevðrh � knhÞj � ðry þ HahÞÞþ.

ð3:7Þ
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Remark 3.1. For the model (3.7), Problem 2.2 can be solved in closed form with respect to the trial elastic
state ðeh � ðe0 � C�1r0Þ; a0Þ [39,15].
4. Reliability and efficiency of gEQ

In this section after recalling the equilibration technique, we state and prove the main results of the paper
on the reliability and efficiency of equilibrated residual type error estimates for the L2 norm of the error on
the stress.

4.1. Equilibrated residual error estimates

Let rh and rh,h be solution of Problems 2.1 and 2.3, respectively. The residual functional produced by the
stress field rh,h in the equilibrium equations is the element of V� defined by
hRh; vi :¼ ‘hðvÞ �
Z
X
rh;h : eðvÞdx ¼

Z
X
ðrh � rh;hÞ : eðvÞdx. ð4:1Þ
Equilibrated error estimates are based on

(i) a localization of the global residual hRh,vi into equilibrated element residuals,
hRh; vi ¼
X
T2T

‘EQT ðvÞ for all v 2 V ð4:2Þ
with the property that
‘EQT ðvÞ ¼ 0 for all v 2 RMðT Þ. ð4:3Þ

(ii) a Riesz representation of the bounded linear functional ‘EQT in the Hilbert space WT .

If T 2 T is such that oT \ CD 5 ; and oT \ CD � ED, the local space WT is defined as
WT :¼ H 1
DðT ;RdÞ :¼ fw 2 H 1ðT ;RdÞ : w ¼ 0 on oT \ CDg; ð4:4Þ
otherwise we assume
WT :¼ H 1ðT ;RdÞ=RMðT Þ. ð4:5Þ

Here, RM(T) denotes the kernel of e(vjT), namely the set of the rigid body motions on the element T 2 T
[34]. In the latter case, (�Te(v) : e(v)dx)1/2 is a norm inWT , for it is equivalent to the quotient norm thanks to
the Korn inequality and the equivalence of the seminorm kDukL2ðT ;Rd�d Þ to the quotient norm in (4.5) [16,34].

The localization of the integrals in (4.1) over each T 2 T, use of the integration by parts, and suitable
rearrangement of the several terms on the boundaries yields [6]
hRh; vi ¼
X
T2T

Z
T
rh;T � vdxþ

X
E2E

Z
E
Jh;E � vds. ð4:6Þ
In (4.6), rh;T :¼ divTrh;h þ f defines the regular component of hRh,vi associated with the lack of equilibrium
at the interior of each element T 2 T, whereas for each edge E 2 E; Jh;E defines the singular component and
denotes the jump of the normal tractions of the stress fields across E in direction mE,
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Jh;E ¼
½rhmE�E if E 2 EX;

g � rhm if E 2 EN;

0 if E 2 ED.

8><>: ð4:7Þ
Notice that [rhmE]E does not depend on the orientation of mE.
Localization of the residual into equilibrated element residuals is obtained by assuming a splitting of the

interelement flux Jh,E meeting the following conditions:
JTþ
h;E þ JT�

h;E ¼ Jh;E;

‘EQT ðvÞ :¼
Z
T
rh;T � vdxþ

X
E2EðT Þ

Z
E
JT
h;E � vds ¼ 0 for all v 2 PkðT ;RdÞ; ð4:8Þ
with JT
h;E ¼ Jh;E if E 2 EN [ ED [6, p. 500]. Here, PkðT ;RdÞ denotes the local finite element space and (4.8)2 is

referred to as pth-order equilibration or prolongation condition [2,28]. Since RMðT Þ � PkðT ;RdÞ, condition
(4.3) is enforced as well. Hence, hRh,vi reads
hRh; vi ¼
X
T2T

‘EQT ðvÞ ¼
X
T2T

Z
T
rh;T � vdxþ

X
E2EðT Þ

Z
E
JT
h;E � vds. ð4:9Þ
For the definition of ‘EQT , several equilibration techniques have been proposed [27,28,7,3,29] according to
the definition of the splitting of the interelement flux Jh,E and the solution of the resulting system in terms
of the degrees of freedom that define the polynomial pointwise distribution of the element boundary trac-
tions JT

h;E on E 2 EðT Þ. In this paper, we consider the flux splitting given in [3], that is, for E 2 EX, let
JTþ
h;E ¼ gEjTþ

� rhjTþ
mTþ and JT�

h;E ¼ gEjT�
� rhjT�

mT� ; ð4:10Þ
with gEjTþ
þ gEjT�

¼ 0; mT the outward normal to T, and rhjT the restriction of rh to T, whereas for
E 2 EN [ ED; JT

h;E ¼ Jh;E.
The Riesz representation of the bounded functionals ‘EQT ðvÞ is obtained by the following theorem.

Theorem 4.1. Given any T 2 T, there exists a unique /T 2 WT with
Z
T
eð/T Þ : eðvÞdx ¼ ‘EQT ðvÞ for all v 2 WT . ð4:11Þ
Proof. If W T ¼ H 1
DðT ;RdÞ, using the second Korn inequality, one can easily show that Lax–Milgram the-

orem applies. If W T ¼ H 1ðT ;RdÞ=RMðT Þ, since ‘EQT ðvÞ ¼ 0 for all v 2 RM(T), the functional ‘EQT ðvÞ is well
defined over H 1ðT ;RdÞ=RMðT Þ and is therein continuous. Hence, the Riesz theorem applies and proves the
assertion. h

Definition 4.1 (Error estimator gEQ). Given the finite element stress field rh, and an exact splitting of the
residual jump Jh,E into JTþ

h;E and JT�
h;E (and standard modification if E � CN) meeting conditions (4.8), define

the functional ‘EQT ðvÞ for v 2 WT by
‘EQT ðvÞ :¼
Z
T
rh;T � vdxþ

X
E2EðT Þ

Z
E
JTþ
h;E � vds.
For each element T 2 T define g2EQ;T as
g2EQ;T :¼ keð/T Þk
2
L2ðX;Rd�d Þ ¼

Z
T
eð/T Þ : eð/T Þdx. ð4:12Þ
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As a global error estimator define
gEQ :¼
X
T2T

g2EQ;T

 !1=2

. ð4:13Þ
4.2. Main results

The equilibration technique described in the previous section provides reliable and efficient estimates for
the L2 norm of the error on the stress of conforming displacement finite element approximations of the
incremental Problem 2.1.

Theorem 4.2. Assume Problems 2.1 and 2.3 are defined by the same initial data, i.e. u0 = u0,h, r0 = r0,h, and
a0 = a0,h. Denote with gEQ,T the local error indicators defined in (4.12).

(i) Reliability of gEQ. Given any element T 2 T there exists a constant CT ðH;CÞ dependent on the material

properties and regularity of the triangulation such that
krh � rh;hkL2ðX;Rd�d Þ 6 ðdkþ 2lÞ
X
T2T

C2
T ðH;CÞg2EQ;T

 !1=2

. ð4:14Þ
(ii) Efficiency of gEQ. There exists a positive constant Ceff depending on the regularity of the triangulation

and on the polynomial order such that
gEQ � hot 6 Ceffkrh � rh;hkL2ðX;Rd�d Þ. ð4:15Þ
For the explicit expressions of the constants CT that enter Eq. (4.14) we refer to the material model given in
Section 3. Different cases need to be distinguished according to the conditions associated with the solu-
tion uh of Problem 2.1 and the solution uh,h of Problem 2.3. These are summarized by the following
proposition.

Proposition 4.1 (Hardening depending reliability). Suppose uh and uh,h satisfy at any point x 2 T one of the

following conditions:

(i) If elastic deformations occur in correspondence of both uh and uh,h, then holds
CT ¼ ð2lÞ�1. ð4:16Þ

(ii) If inelastic deformations occur in correspondence of both uh and uh,h, then there holds
CT ¼ ð2lÞ�1 þ 2hDt= 3.þ HhDt þ khDtð Þ. ð4:17Þ

(iii) If inelastic deformations occur in correspondence of either uh or uh,h, then holds
CT ¼ ð2lÞ�1 þ hDt= 3.þ HhDt þ khDtð Þ. ð4:18Þ
Remark 4.1. According to Proposition 4.1 (4.14) is not a full a posteriori error estimate, since the constant
CT depends on uh. In practice, we consider only the conditions defined by the finite element approximation
uh,h, with the constant given by Eq. (4.17) upon the occurrence of inelastic deformations.
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4.3. Proofs of main results

The proof of Theorem 4.2 is obtained in steps. We first recall the following results and prove Proposition
4.1.

Lemma 4.1. Let ðuh; rhÞ 2 V �S and ðuh;h; rh;hÞ 2 V h �S be solution of Problems 2.1 and 2.3, respectively.
Then there holds Z
ð2lþ dkÞ�1krh � rh;hk2L2ðX;Rd�d Þ 6 krh � rh;hk2C�1 :¼
X
ðrh � rh;hÞ : C�1ðrh � rh;hÞdx

6

Z
X
ðrh � rh;hÞ : eðuh � uh;hÞdx. ð4:19Þ
Proof. The first inequality follows easily from the decomposition in spheric and deviatoric part of the stress
tensor and of its expression in terms of the elasticity tensor. The second inequality follows from the same
arguments of Remark 2.1 concerning the monotony of the operator �h # rh. h

Lemma 4.2 (Pointwise bound on the error on the elastic strain tensor). Denote with e ¼ C�1r the elastic

part of the total strain. Then there holds
jeh � eh;hj 6 ð2lÞ�1jrh � rh;hj. ð4:20Þ
Proof. This follows from r = 2le + k treI. h

Lemma 4.3 (Pointwise bound on the error on the plastic strain tensor). There exists a material dependent

constant CH such that there holds
jph � ph;hj 6 CHjrh � rh;hj; ð4:21Þ
with

(i) CH = 2hDt/(3. + HhDt + khDt) if inelastic deformations occur in correspondence of uh and uh,h;

(ii) CH = hDt/(3. + HhDt + khDt) if inelastic deformations are associated with either uh or uh,h.

Proof. (i) Let c = hDt/(3.). By solving (3.7)3 with respect to ah and replacing into (3.7)2, and taking the
deviator of both sides, one obtains
devðnh � n0Þ ¼
c

1þ cH
ðjdevðrh � knhÞj � ðry þ Ha0ÞÞ

devðrh � knhÞ
jdevðrh � knhÞj

; ð4:22Þ
which also yields
jdevðrh � knhÞj ¼
1þ cH

c
jdevðnh � n0Þj þ ðry þ Ha0Þ. ð4:23Þ
Since ah P a0, it is
jdevðrh � knhÞj � ðry þ a0HÞ P 0; ð4:24Þ
therefore, by accounting of Eqs. (4.23) and (4.24), (4.22) reads as
devðnh � n0Þ ¼
jdevðnh � n0Þj
jdevðrh � knhÞj

devðrh � knhÞ. ð4:25Þ
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From Eqs. (4.23) and (4.25), after some rearrangements, one obtains
devðnh � n0Þ ¼
cjdevðnh � n0Þjdevðrh � kn0Þ

ð1þ cH þ ckÞjdevðnh � n0Þj þ cðry þ Ha0Þ
; ð4:26Þ
which gives
jdevðnh � n0Þj ¼
cðjdevðrh � kn0Þj � ðry þ Ha0ÞÞ

1þ cH þ ck
. ð4:27Þ
By replacing then (4.27) into (4.26), one finally obtains
devðnh � n0Þ ¼
c

1þ cH þ ck
jdevðrh � kn0Þj � ðry þ Ha0Þ

jdevðrh � kn0Þj
devðrh � kn0Þ. ð4:28Þ
Likewise, it is
devðnh;h � n0Þ ¼
c

1þ cH þ ck
jdevðrh;h � kn0Þj � ðry þ Ha0Þ

jdevðrh;h � kn0Þj
devðrh;h � kn0Þ. ð4:29Þ
For the ease of the proof and to simplify the notation we introduce the shorthand
X :¼ devðrh;h � kn0Þ; Y :¼ devðrh;h � kn0Þ;

x :¼ c
1þ cH þ ck

jX j � ðry þ Ha0Þ
jX j ; y :¼ c

1þ cH þ ck
jY j � ðry þ Ha0Þ

jY j .
By combining Eqs. (4.28) and (4.29), it follows:
devðnh � nh;hÞ ¼ xX � yY ¼ 1
2
ðx� yÞðX þ Y Þ þ 1

2
ðxþ yÞðX � Y Þ. ð4:30Þ
From (3.7)2 and the corresponding equation of the fully discrete scheme, one can easily state that
jnh � nh;hj ¼ jdevðnh � nh;hÞj; ð4:31Þ
so that applications of the triangular inequality in (4.30) produce
jnh � nh;hj 6 1
2
jx� yjðjX j þ jY jÞ þ 1

2
jxþ yjjX � Y j. ð4:32Þ
Also, it is
xþ y ¼ c
1þ cH þ ck

jX j � ðry þ Ha0Þ
jX j þ jY j � ðry þ Ha0Þ

jY j

� �
6

2c
1þ cH þ ck

. ð4:33Þ
After some rearrangements, one obtains
jx� yjðjX j þ jY jÞ ¼ c
1þ cH þ ck

ry þ Ha0
jX jjY j ðjX j þ jY jÞ jX j � jY jj j 6 2c

1þ cH þ ck
jX � Y j. ð4:34Þ
By accounting of the expression of c (4.32) can be recast as
jnh � nh;hj 6
2c

1þ cH þ ck
jdevðrh � rh;hÞj 6

2hDt
3.þ HhDt þ khDt

jrh � rh;hj. ð4:35Þ
Since ph � ph,h = nh � nh,h, one proves (4.21) for CH = 2hDt/(3. + HhDt + khDt).
(ii) If, for instance, uh,h does not produce inelastic deformations, it is
ph;h ¼ p0; nh;h ¼ n0; ah;h ¼ a0; jdevðrh;h � kn0Þj � ðry þ Ha0Þ 6 0. ð4:36Þ
On the other hand, since uh produces inelastic deformations, Eq. (4.28) holds, and accounting for (4.36)4 it
follows:
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jdevðnh � n0Þj ¼
c

1þ cH þ ck

����jdevðrh � kn0Þj � ðry þ Ha0Þ
����

6
c

1þ cH þ ck

����jdevðrh � kn0Þj � jdevðrh;h � kn0Þj
���� 6 c

1þ cH þ ck
jrh � rh;hj. ð4:37Þ
As a result, from (4.36)2, (3.7)2 and the expression of c, one finds
jnh � nh;hj ¼ jnh � nh;0j ¼ jdevðnh � nh;0Þj 6
hDt

3.þ HhDt þ khDt
jrh � rh;hj; ð4:38Þ
proving (4.21) with CH ¼ hDt=ð3.þ HhDt þ khDtÞ. h

Proof of Proposition 4.1. From the additivity of the total strain,
eðuh � uh;hÞ ¼ eh � eh;h þ ph � ph;h; ð4:39Þ
combining the results of Lemmas 4.2 and 4.3, and using the triangular inequality, one obtains the following
pointwise bound for the norm of the total strain tensor
jeðuh � uh;hÞj 6 jeh � eh;hj þ jph � ph;hj 6 ðð2lÞ�1 þ CHÞjrh � rh;hj ð4:40Þ
with CH varying according to the cases of Lemma 4.3. h

From (4.40), and assuming CH constant over T, one concludes that given any T 2 T there holds
keðuh � uh;hÞkL2ðT ;Rd�d Þ 6 CT ðH;CÞkrh � rh;hkL2ðT ;Rd�d Þ; ð4:41Þ
where we have let CT ðH;CÞ :¼ ð2lÞ�1 þ CH.

Proof of Theorem 4.2. (i) Reliability of gEQ. The Galerkin orthogonality and Lemma 4.1 yield
1

dkþ 2l
krh � rh;hk2L2ðX;Rd�d Þ 6

Z
X
ðrh � rh;hÞ : eðuh � uh;hÞdx ¼ hRh; uh � uh;hi. ð4:42Þ
Recalling the localization of the residual at any T 2 T given by (4.9) and Theorem 4.1 it follows that
hRh; uh � uh;hi ¼
X
T2T

‘T ðuh � uh;hÞ ¼
X
T2T

Z
T
eð/T Þ : eðuh � uh;hÞdx. ð4:43Þ
Using Cauchy–Schwarz inequality and (4.41), one obtains
Z
T
eð/T Þ : eðuh � uh;hÞdx 6 keð/T ÞkL2ðT ;Rd�d Þkeðuh � uh;hÞkL2ðT ;Rd�d Þ

6 keð/T ÞkL2ðT ;Rd�d ÞCT ðH;CÞkrh � rh;hkL2ðT ;Rd�d Þ. ð4:44Þ

Summing over each element and the discrete form of the Cauchy–Schwarz inequality yield
X

T2T

Z
T
eð/T Þ : eðuh � uh;hÞdx

6

X
T2T

C2
T ðH;CÞkeð/T Þk

2
L2ðT ;Rd�d Þ

 !1=2 X
T2T

krh � rh;hk2L2ðT ;Rd�d Þ

 !1=2

. ð4:45Þ
By combining Eqs. (4.42), (4.43), and (4.45), one finally obtains (4.14).
(ii) Efficiency of gEQ. By accounting of (4.10) and corresponding modification if E 2 EN [ ED, rearrange

the terms in (4.8) in the form
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‘EQT ðvÞ ¼
Z
T
rh;T � vdxþ

X
E2EðT Þ

Z
oE
ðgEjT � hrhmEiÞ � vdsþ

1

2

X
E2EðT Þ

Z
E
Jh;E � vds; ð4:46Þ
with
hrhmEi ¼

1
2
ðrhjT þ rhjT 0 ÞmE on EðT Þ \ EðT 0Þ;
rhjT mE on EðT Þ \ ED;

g on EðT Þ \ EN.

8><>:

For the edge E 2 E n CN introduce the L2-orthogonal projection PE,k of L

2ðE;RdÞ onto PkðE;RdÞ. For the
equilibration condition (4.8)2, and with gEjT 2 PkðE;RdÞ, there holds [26, Thm. 4.41], [1, Thm. 3]
hT
X

E2EðT Þ
kgT �PE;khrhmEik2L2ðE;Rd Þ 6 C h2T

X
T 0�xðT Þ

krh;T 0 k2L2ðT 0 ;Rd Þ þ hT
X

E2E
	
ðxðT ÞÞ

kJh;Ek2L2ðE;Rd Þ

0B@
1CA; ð4:47Þ
with C a positive constant depending on the polynomial degree k and not on the mesh size. After introduc-
ing the mean value of v as �v ¼ 1=jT j

R
T vdx, from Eqs. (4.11) and (4.46) it follows:
Z

T
eð/T Þ : eðvÞdx ¼

Z
T
eð/T Þ : eðv� �vÞdx ¼ ‘EQT ðv� �vÞ

¼
Z
T
rh;T � ðv� �vÞdxþ 1

2

X
E2EðT Þ

Z
E
Jh;E � ðv� �vÞds

þ
X

E2EðT Þ

Z
E
ðgE � hrhmEiÞ � ðv� �vÞds. ð4:48Þ
For v = /T in (4.48), the Cauchy inequality first, and the Poincaré inequality then, give
g2EQ;T 6 CkD/TkL2ðT ;Rd�d Þ khT rh;TkL2ðT ;Rd Þ þ
X

E2EðT Þ
kh1=2E Jh;EkL2ðE;Rd Þ

 

þ
X

E2EðT Þ
kh1=2E ðgEjT �PE;khrhmEiÞkL2ðE;Rd Þ þ

X
E2EðT Þ

kh1=2E ðPE;khrhmEi � hrhmEiÞkL2ðE;Rd Þ

!
.

The Korn inequality kD/TkL2ðT ;Rd�d Þ 6 Ckeð/T ÞkL2ðT ;Rd�d Þ, the definition (4.12) of gEQ,T, summing over
T 0 2 x(T), and the estimate (4.47) finally yield the following local efficiency estimate
gEQ;T 6 C khrhkL2ðxðT Þ;Rd Þ þ
X

E2E
	
ðxðT ÞÞ

kh1=2E Jh;EkL2ðE;Rd Þ þ
X

E2E
	
ðxðT ÞÞ

kh1=2E ðPE;khrhmEi � hrhmEiÞkL2ðE;Rd Þ

0B@
1CA;

ð4:49Þ

with C depending on the shape of X and on the polynomial degree k.

Following the technique with inverse estimates due to Verfürth [41,42], denote by ~f and ~g a finite element

approximation of f and g, for instance piecewise constant. Define eJ E ¼ ~g � rhm if E 2 EN, otherwiseeJ E ¼ Jh;E, then there holds
khT rh;TkL2ðT ;Rd Þ 6 Cðkr� rhkL2ðxðT Þ;Rd�d Þ þ khðf � ~f ÞkL2ðxðT Þ;Rd ÞÞ;

kh1=2E Jh;EkL2ðE;Rd Þ 6 Cðkr� rhkL2ðxðEÞ;Rd�d Þ þ khðf � ~f ÞkL2ðxðEÞ;Rd Þ þ kh1=2E ðJh;E � ~JEÞkL2ðE;Rd ÞÞ;
ð4:50Þ
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with C a positive constant depending on the shape regularity of the triangulation. Hence, (4.50) together
with (4.49), and the finite overlap between the patches of elements, establish finally (4.15). h
5. Adaptive algorithm and numerical examples

This section is devoted to numerical experiments on a posteriori error control and h-finite element adap-
tive algorithms for a single time step of the elastoplastic and viscoplastic evolution problem. An h-finite ele-
ment adaptive algorithm consists of recursive loops of the form [9].
SOLVE ! ESTIMATE ! MARK ! REFINE
All the discretizations are generated by Algorithm 5.1 where for the step ESTIMATE we use gR and gEQ,
whereas the step MARK is defined by the max-refinement rule that marks a subset M � E according to
(5.1). We consider H = 0 for uniform meshes (as all elements in step (e) are marked) and H = 1/2 for adap-
tive mesh-refining (related strategies and a different choice for 0 < H < 1 are disputable). Notice that the
algorithm is the same as in linear elasticity, for the estimates gEQ and gR are related only to the norm of
the residual in the equilibrium equations.

Algorithm 5.1

(a) Start with a coarse mesh T0, set k = 0.
(b) Solve the discrete problem with respect to the actual mesh Tk for N degrees of freedom.
(c) Compute gT = gEQ,T (resp. gT = gR,T) for all T 2 Tk.

(d) Compute gN :¼
P

T2Tg
2
T

� �1=2
as estimate for eN :¼ krh � rh;hkL2ðXÞ.

(e) Mark the element T for (red) refinement provided
H max
T 02Tk

gT 6 gT . ð5:1Þ
(f) Mark further elements (within a red–green–blue refinement) to avoid hanging nodes. Define the result-
ing mesh as the actual mesh Tkþ1, update k and go to (b).

Details on the so-called red–green–blue refinement strategies may be found in [41].
In the following three numerical examples, all involving linear kinematic hardening, a backward Euler

time scheme has been employed for the time discretization, whereas the space discretization has been ob-
tained with P2 finite elements in order to prevent locking [43]. For the evaluation of the equilibrated error
estimates, the flux splitting detailed in [3] with first-order equilibration has been assumed. Computable
approximations to the solution of the local Neumann problems (4.11) have been obtained using a P4-finite
element method which delivers reliable and efficient computed estimates as well, provided that the given
data are smooth.

In the first example, with known analytical solution, we analyse the behaviour of the exact error
e :¼ krh � rh;hkL2 and of the bounds CrelgR, CrelgEQ with the hardening modulus k and the number of de-
gree of freedom. In the next two examples, for the presence of a singularity in the stress field and motivated
by the efficiency estimate, we compare uniform and adaptive refinements based on gEQ and gR.
5.1. Elastoplastic ring with known solution

Consider the ring depicted in Fig. 2 with no volume force (f = 0) and radially applied surface forces
g1(r,/,t) = ter and g2(r,/,t) = �t/4er, where er ¼ ðcos/; sin/Þ.



Fig. 2. Geometric model for the ring with elastoplastic and kinematic hardening material. Initial mesh T0: 48 P2-elements.
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The analytical solution for the body centred at the origin with no rotation reads
uðr;/; tÞ ¼ urðr; tÞer; ð5:2Þ
rðr;/; tÞ ¼ rrðr; tÞer 
 er þ r/ðr; tÞe/ 
 e/; ð5:3Þ
pðr;/; tÞ ¼ prðr; tÞðer 
 er � e/ 
 e/Þ ð5:4Þ
(see [12] for details) with e/ ¼ ð� sin/; cos/Þ and

urðr; tÞ ¼ t=ð2lrÞ � ð2=3Þjðr þ 4a=ðlrÞÞIð1Þ � 2jrIðrÞ;
rrðr; tÞ ¼ �t=r2 � ð2=3Þajð1� 4=r2ÞIð1Þ � 2ajIðrÞ;
r/ðr; tÞ ¼ oðrrrÞ=or;
prðr; tÞ ¼ �ry=ð

ffiffiffi
2

p
ðajþ kÞÞðR2=r2 � 1Þþ;

IðrÞ ¼ �ry=ð
ffiffiffi
2

p
ðajþ kÞÞ 1=2ðR2=r2 � 1Þþ � ðlnðR=rÞÞþ

� �
.

The radius R(t) of the circular plastic boundary is the positive root of
a lnR2 ¼ ða� 1ÞR2 � aþ t
ffiffiffi
2

p
=ry.
A uniform time-step size 0.1 over the time interval (0,4.0) has been used and according to symmetry,
only a quarter of the domain has been discretized with symmetric boundary conditions and the initial
coarse mesh T0 of Fig. 2. Within each refinement step (f) of Algorithm 5.1, new nodes on the boundary
are projected onto the curved boundary.

For only purpose of comparison we consider here the worst scenario given by the occurrence of inelastic
deformations in correspondence of both un+1 and un+1,h, and CT from (4.17) constant over each element. In
presence of viscosity from (4.14) follows:
Crel ¼ ðdkþ 2lÞCT ¼ ðdkþ 2lÞðð2lÞ�1 þ 2=ð3q=Dt þ kÞÞ ð5:5Þ

with d = 2. The values of Crel for different values of k and q/Dt are reported in Table 1. Although the pres-
ence of viscosity reduces the value of Crel for small values of k, its value still remains prohibitive for pro-
viding useful upper bounds. On contrary, the influence of q is not relevant for values of k close to the elastic
modulus.



Table 1
Variation of the reliability constant Crel from Eq. (5.5) with the hardening modulus k and the ratio q/Dt

k Crel

q/Dt = 0 q/Dt = 1 q/Dt = 10 q/Dt = 100 q/Dt = 1000

0.1 7,457,389 240,563 24,778 2487 251
1 745,740 186,437 24,058 2480 251
10 74,576 57,367 18,646 2409 250
100 7460 7242 5739 1867 243
1000 748 746 726 576 189
10,000 77 77 77 75 60
28,000 29 29 29 29 26
50,000 17 17 17 17 16
100,000 9.7 9.7 9.7 9.7 9.5
150,000 7.2 7.2 7.2 7.2 7.1
200,000 6.0 6.0 6.0 6.0 5.9

Notice that for useful values of Crel, the influence of the ratio q/Dt is small compared to k. The elastic material constants are
E = 210,000, m = 0.28.
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For the model problem under consideration, with no viscosity, Table 2 reports the error on the stress for
different values of the hardening modulus k, along with the value of the estimates gEQ and gR, the reliability
constant Crel as from (5.5) for . ! 0, and the effectivity index
Table
Variat

k

150,00
100,00
80,000
50,000
28,000
10,000
1000
100

It is no
elastic
freedo
f ¼ ðdkþ 2lÞðð2lÞ�1 þ 2=kÞg=kr� rhkL2 . ð5:6Þ

For g = gEQ and g = gR, (5.6) gives fEQ and fR, respectively.

The error bound Crelg crucially depends on the factor Crel. Apart from the critical dependence on the
parameter m, present also in elasticity, there is a by far problematic dependence on k. The value of this var-
iable is critical in the comparison with the elasticity modulus. It is seen that the effectivity index results in an
acceptable value only for k close to E. For small values of k compared with the elasticity modulus E the
effectivity index is very high and for k! 0, Crel ! 1. This corresponds to the case of perfect plasticity,
which is therefore ruled out in our considerations. Furthermore, it is interesting to notice that when we
compare only g with the exact error e, the equilibrated estimate gEQ is closer to e than gR.
2
ion of the effectivity index and of the value of the reliability constant with the hardening parameter k

kr� rhk2 gEQ gR Crel fEQ fR

0 0.000893 0.001449 0.004084 7.2 11.8 33
0 0.001001 0.001608 0.004747 9.7 15.6 46

0.001055 0.001683 0.005121 12 18.59 56
0.001141 0.001791 0.005807 17 27 87
0.001188 0.001853 0.006302 29 45 153
0.001194 0.001869 0.006910 77 120 444
0.001179 0.001848 0.007177 748 1172 4550
0.001177 0.001846 0.007212 7460 11,695 45,703

ticed that the value of Crel, fEQ, and fR depend crucially on k, with high overestimation for values of k small compared to the
modulus. The values reported in the table refers to the analysis carried out in the last time step on a mesh with 49,666 degree of
m.



Fig. 3. Convergence history of the error, of the bound CrelgEQ, and CrelgR as a function of the degrees of freedom and different values
of the hardening modulus k. In the top picture the behaviour of CrelgEQ and CrelgR is compared to the error for values of k = 1.5 · 105,
105, 8 · 104, 5 · 104 noting that both the bounds are closer to the error for k = 1.5 · 105 whereas CrelgEQ provides sharper bound. In
the bottom picture, reduced values of k are considered, k = 2.8 · 104, 104, 103, 102, with both CrelgR and CrelgR hugely overestimating
the error.

C. Carstensen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2574–2598 2591
The behaviour of the exact error e, of the bounds CrelgEQ, and CrelgR with the number of degrees of free-
dom and the hardening parameter k is finally plotted in Fig. 3. A behaviour similar to the one described in
Table 2 can be noted with the hardening modulus. Given the regularity of the solution, both the bounds
CrelgEQ and CrelgR perform a convergence rate with respect to the number of degrees of freedom of about
1 for uniform refinement. This corresponds to the convergence rate of 2 with respect to a (uniform) mesh
size h, consistently with the use of P2 finite elements and to the estimate in energy norm.
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5.2. L-shape domain

TheL-shapedomainX = (0,1)2n(0,0.5)2with vanishing volume force f andboundary conditions depicted in
Fig. 4 is analysed. Only one time step, equal to the time interval (0,0.1), is considered for the time discretization
Fig. 4. Geometric model for the L-shape domain with Dirichlet boundary condition u = 0 on CD and Neumann boundary conditions
g = (0,1.2t) on CN at y = 1 for t 2 (0,0.1). Initial mesh T0: 48 P2-elements.

Fig. 5. Convergence rate of gEQ and gR for uniform and adaptive finite element refinements based on gEQ and gR for the L-shape
domain. Both estimates gEQ and gR perform a convergence rate with respect to the number of degrees of freedom of about 1 for
adaptive refinement in contrast to 0.33 for uniform refinement. This corresponds to the convergence rate of 2 and 0.66, respectively,
with respect to a (uniform) mesh size h.
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Fig. 6. Adapted meshesT0; . . . ;T7 generated by Algorithm 5.1 with H = 1/2 for the L-shape domain based on a refinement with gEQ.
The mesh refining Algorithm 5.1 driven by gEQ produces local higher refinement towards the reentrant corner.
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Fig. 7. Geometric model for the Cook�s membrane with u = 0 on CD and applied load g = (0,8t) on the boundary CN at x = 48 for
t 2 (0,1.0). Initial mesh T0: 128 P2 triangular finite elements.

Fig. 8. Convergence rate of gEQ and gR for uniform and adaptive finite element refinements based on gEQ and gR for the Cook�s
membrane. Both estimates gEQ and gR perform for adaptive refinement a convergence rate of about 1 corresponding to the
convergence rate 2 with respect to a (uniform) mesh size h.

2594 C. Carstensen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2574–2598
of the evolution problemwith the backward Euler scheme, whereas the coarsemeshT0 withP2-triangular ele-
ments shown in Fig. 4 realises the space discretization in the first step of Algorithm 5.1 with H = 1/2.
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Fig. 9. Adapted triangulations T0; . . . ;T5 for the Cook�s membrane generated with the Algorithm 5.1 with H = 1/2, and based on a
refinement with gEQ. Notice a local higher refinement towards the upper left corner where change of boundary conditions occur and at
the right end where point loads are applied.
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For elastic behaviour, the analytical solution presents a typical corner singularity in the stress field at the
reentrant corner. In the elastoplastic case the exact solution is unknown and we suspect that it might show a
similar singularity at the origin. Hence, adaptive algorithms should lead to a better convergence. This is
shown in Fig. 5 where convergence rates of gR and gEQ for uniform and adaptive refinement based on
gR and gEQ, respectively, are compared. One can notice that the uniform mesh-refinement converges only
sub-optimally due to the singularity, as expected, while adaptive mesh-refinement based on both gEQ and gR
recovers optimal convergence rates, also on occurrence of plastic deformations. Finally, Fig. 6 depicts the
triangulations generated with Algorithm 5.1 showing a local higher refinements towards the reentrant
corner.
5.3. Cook’s membrane

The Cook�s membrane depicted in Fig. 7 is clamped at one end and subjected to a shear load g = (0,8.0t)
along the opposite end (and vanishing volume force f = 0). Also in this example only one time step equal to
the time interval (0,1.0) is considered for the time discretization of the evolution problem with the back-
ward Euler scheme, whereas the coarse mesh T0 with P2-triangular elements shown in Fig. 7 is used for
the space discretization in the first step of Algorithm 5.1.

This problem as well is meant to serve as test for the performance of adaptive finite element methods for
incremental plasticity. The proposed Algorithm 5.1 leads to a slightly better order of experimental conver-
gence depicted in Fig. 8 with adaptive finite element refinement based on both gEQ and gR. The triangula-
tions generated by Algorithm 5.1 based on gEQ, reported in Fig. 9, show local mesh refinement towards the
upper left corner where a change of the type of boundary conditions causes a singularity, and at the right
end where point loads are applied.
6. Conclusions

This paper establishes reliability and efficiency of equilibrated a posteriori error estimates for L2 stress
error control of conforming displacement finite element approximations. For the explicit bounds, explicit
expressions of the reliability constant are developed in terms of the hardening parameter for a quite general
class of inelastic material models. Theoretical and numerical considerations illustrated the crucial depen-
dence of the reliability constant on the hardening parameter leading to a deterioration of the guaranteed
upper bound when k approaches zero. This corresponds to perfect plasticity where the estimate is not the-
oretically justified. Furthermore, motivated by the efficiency estimate, using directly gEQ and/or gR in the
adaptive mesh-refining Algorithm 5.1 one improves the quality of the spatial discretization in case of non-
optimal quasiuniform meshes. The related estimator gEQ and also gR showed a significantly improved
experimental convergence rate for the examined model problems.
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